National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Classical limit of relativistic dynamical fields
Hruška, Ondřej ; Podolský, Jiří (advisor) ; Svítek, Otakar (referee)
In this work, we summarise existing results concerning the absence of "gravitational aberration" in Einstein's general theory of relativity, i.e., the fact that the gravitational "force" points towards the instantaneous position of objects with mass, although the field propagates at the speed of light. The electromagne- tic interaction behaves similarly. Thanks to that, the classical limit with infinite speed of propagation of electricity and gravitation is a good approximation of relativistic fields. We use the Liénard-Wiechert potentials to compute the corre- sponding electric field, and the Christoffel symbols calculated from the metric of so-called photon rocket to determine the gravitational acceleration. We analyse the magnitude and direction of the interaction in both cases. Our own contri- bution is an attempt to interpret the direction of gravitation interaction in the context of de Sitter universe with non-zero cosmological constant.
Classical limit of relativistic dynamical fields
Hruška, Ondřej ; Podolský, Jiří (advisor) ; Svítek, Otakar (referee)
In this work, we summarise existing results concerning the absence of "gravitational aberration" in Einstein's general theory of relativity, i.e., the fact that the gravitational "force" points towards the instantaneous position of objects with mass, although the field propagates at the speed of light. The electromagne- tic interaction behaves similarly. Thanks to that, the classical limit with infinite speed of propagation of electricity and gravitation is a good approximation of relativistic fields. We use the Liénard-Wiechert potentials to compute the corre- sponding electric field, and the Christoffel symbols calculated from the metric of so-called photon rocket to determine the gravitational acceleration. We analyse the magnitude and direction of the interaction in both cases. Our own contri- bution is an attempt to interpret the direction of gravitation interaction in the context of de Sitter universe with non-zero cosmological constant.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.